Whirlybird Lab

<u>Purpose:</u> To measure vertical valocity (fall rate) of two unique whirlybirds. <u>Materials:</u> A piece of paper, a paper clip (optional), sissors, pencil, and stop watch.

Procedures: See lab manual pages 1-7.

Data Results:

- 1. Our whirlybird rotated counterclockwise. It fell counterclockwise every time we dropped it.
- 2. To swich the rotation of the whirlybird you have to flip the "wings" of the whirlybird. It should go the other way.
- 3. When we used the paper clip the whirlybird went faster then without the paper clip.
- Height of drop= 240 cm

Data Table 1

Trial	Time for Fall (s)	Speed (cm/s)
1	1.76 s	136 cm/s
2	1.39 s	173 cm/s
3	1.20 s	200 cm/s
Average	1.45 s	170 cm/s

Data Table 2

Trial	Time for Fall (s)	Speed (cm/s)
1	1.17 s	205 cm/s
2	1.21 s	198 cm/s
3	1.25 s	192 cm/s
Average	1.22 s	199 cm/s

- 4. We were successful in changing the speed. You can increase or decrease the vertical speed depending on how many paperclips are on the "tail" of your whirlybird.
- 5. We weren't very successful in changing the rotation speed. You can increase and decrease the rotation speed.
- 6. A man made object that a whirlybird reminds me of is a helicopter. A natural object would be a seedling helicopter.
- 7. That you can change the speed of a falling object if you add more weight to that object.